Welcome to the Machine Learning Course for Black and Indigenous Students!

This program is offered by Vector Institute in its drive to build research and expand career pathways in the field of AI for under-represented populations.

Instructor: Bonaventure Molokwu | Tutorial Developer: Manmeet Kaur Baxi | Course Tutors: Yinka Oladimeji and Manmeet Kaur Baxi | Course Director: Shingai Manjengwa (@Tjido)

Never stop learning!

K-Nearest Neighbours (KNN)

Properties of KNN:

KNN Algorithm:

  1. Load data
  2. Initialize 'k' to your chosen number of neighbours, 'K' can be any integer.
  3. For each example in the data 3.1 Calculate the distance between the test data and each row of training data, with help of one of these methods: Euclidean, Manhattan or Hamming. (Most common: Euclidean) 3.2 Sort based on the distance value in ascending order. 3.3 Choose the top ‘K’ rows from the sorted array. 3.4 Assign the class to test point based on most frequent class of these rows.

Untitled

Curse of Dimensionality (Problem of higher dimensions/features):

How to deal with the Curse of Dimensionality?